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Abstract— Accurate estimation of network characteristics, such as
capacity, based on non-intrusive measurements is a fundamental desire
of several applications. For instance, P2P applications that build overlay
networks can use path capacity for optimizing network resources.
The purpose of this work is to present a simple technique to estimate
end-to-end Internet paths capacity. Our basic idea relies on the key
observation that path capacity estimations can be obtained simply by
making adequate inferences on the TCP receiver behavior. The proposed
technique allows that measurements can be executed in the Internet with
no requirement of having access and permission to remote machines. An
off-the-shelf linux kernel is used to implement the method and provide
precise measurements. In addition, a large number of experiments is
collected in a high speed measurement point in order to i) validate, ii)
show the accuracy and iii) explore the path capacity heterogeneity of
some Internet paths. For applicability purposes, a testbed is used for two
developed applications. The first application improves TCP throughput
using the receiver advertised window. The second is designed to find
the exact location of the narrow link (i.e. bottleneck) on an Internet path.

Keywords: Measurements and Monitoring, Network peformance eval-
uation, Inline TCP.

I. INTRODUCTION

Path characteristics estimation is a fundamental desire of several
applications. For instance, streaming applications using a peer-to-peer
backbone (such as Skype, P2PLive) have strict demands on end-to-
end performance requirements. Therefore, the knowledge of capacity,
delay, jitter and loss of packets in Internet paths help on calibrating
the expectations of such applications.

In order to understand the path characteristics that ensure the qual-
ity of service required by applications, measurements have proved to
be an attractive doctrine on Internet research. In particular, knowing
the capacity of Internet paths allows not only to optimize network
resources, but also to design balancing policies according to path
capacities.

Active measurements techniques is one way to perform such
measurements. It has as basic principle the sending of intrusive
probes from source(s) to destination(s) and posterior processing. The
types of metrics obtained by this method can be either one-way path
round-trip path characteristics. The metrics depend on the location of
the measurements, assumptions of synchronization and total control
of both sides. On the other hand, measurements can be performed
in passive [10] way which relies on traces to infer characteristics
of a path. A third mixed technique can be achieved by inferring
characteristics through inspection of the useful traffic pattern only,
without inserting any probes on the path.

The purpose of our work is to present a simple technique to
estimate end-to-end Internet paths capacity, using a mixed method-
ology (i.e. without sending probes while receiving useful data). The
core idea relies on the observation that path capacity estimations
can be obtained simply by making adequate inferences on the TCP

traditional behavior, more precisely, by measuring packet interarrival
dispersions during the slow start phase. If the packets are sent
back-to-back (packet pairs), such dispersion is proportional to the
minimum transmission delay along the path. Equivalently, the packet
pair dispersion could represent the narrow link path capacity.

The proposed technique elaborates on the receiver side of a TCP
connection, allowing measurements to be executed in the Internet
with no requirement of having access and/or permission to remote
machines (i.e. Internet file servers). In addition, since the measure-
ment of packets interarrival can produce either over-estimation or
under-estimation of path capacity due to cross-traffic at some link
[6], our technique requires that a certain packet pair interarrival have
the minimal round-trip among all packet pairs. This minimal round-
trip reduces the likelihood of a packet pair measured to have been
impacted by cross-traffic.

A considerable number of experiments is executed in order to
measure a subset of Internet path capacities, especially the ones
formed by open source file servers. This path capacity perspective is
based on a receiver side TCP located on a single central measurement
point. For illustration purposes, the measurement point is used as a
testbed for two developed applications. The first application improves
TCP throughput using the receiver advertised window. The receiver
regulates its window size based on measured capacity information.
That is, it effectively limits the amount of traffic in flight reducing
the usage of buffer space on the bottleneck. The second application
involves a combination of traceroute and monarch [5]. The goal is
to find the exact location of the narrow link (i.e. bottleneck) on an
Internet path.

The rest of this paper is structured as follows. In section 2,
our attention is first devoted on related techniques for capacity
estimations, then we focus on the proposed TCP inference algorithms.
Section 3 describes the Linux Kernel instrumentation presenting
the state diagrams and pseudo-codes of the proposed algorithms.
In Section 4, a large number of experiments is presented in order
to i) validate and compare the performance of the TCP inference
algorithms, ii) show the accuracy of the Internet capacity estimations
and iii) explore the heterogeneity of the Internet paths. Section 5
presents two applications making use of the embedded TCP receiver
feature and Section 6 concludes the paper.

II. CAPACITY ESTIMATIONS TECHNIQUES

One of the earliest methods to estimate path capacity was described
in [1]. The method called bprobe, relies on the idea that if two packets
are travelling together, they are to be queued as a pair at the bottleneck
link, then the inter-packet spacing will be proportional to the service
time of the bottleneck. This work presented an early version of the
packet pair techniques.



Later, in [7] the authors suggested a robust capacity estimation
technique called PBM (Packet Bunch Sizes). PBM technique works
by stepping through an increasing series of packet bunch sizes1. For
each sample, the bottleneck estimation is computed based on the
receiver trace. After the bottleneck distribution is constructed, the
final estimated value is obtained by finding the maximum value in the
density function. If two modes are similar and sufficiently separated,
it suggests a change in the service rate of the bottleneck.

The meaning of the multiple modes in packet pair dispersions and
packet trains was elaborated further in [2]. They showed that the
strongest mode in the multimodal distribution may not correspond
exactly to the path capacity, but to an under or over-estimated
capacity. In this study, they presented a capacity estimation method-
ology (Pathrate), which uses many packet pairs (with packets of
variable size) to uncover a set of possible “capacity modes”. Then,
as a second phase, they use long packet trains to estimate the so
called “Asymptotic Dispersion Rate” or ADR. ADR corresponds to a
measure of the average statistical multiplexing of the path. The ADR
provides a hint about which capacity local modes to reject. Finally,
Pathrate chooses the mode that has the strongest and narrowest mode
from the non-rejected ones.

There are other techniques not based on dispersion of packet pairs.
In the work [3], a pathchar tool is proposed using the variation of the
round-trip delay as the packet size increases. This technique, based
on the generation of ICMP replies from routers, is known to have
scalability and accuracy problems. In fact, it tries to estimate the
capacity of every link on the path in order to estimate the end-to-end
path’s capacity implying a high overhead.

Although these techniques are well-know and largely used, we can
observe several limitations. First, some of them require the execution
of measurement code at both ends of the measured path [2] . This
constraint limits the applicability of these tools in just a few paths
where the user has access at both the sender and the receiver. Second,
some of the tools depend on ICMP probing packets. Such traffic is
often blocked or handled in different processing path than TCP traffic.
Third, the time to converge to an accurate metric is also a drawback
since several of the methods require a thorough statistical analysis
in order to ensure a reliable capacity estimate, taking in worst cases
several minutes. And at last, all of them are active measurement tools
requiring extra-traffic to be inserted in the network.

CapProbe [6] tackles the convergence speed problem by filtering
out packet pairs according to a simple rule: “packet pairs with
minimal end-to-end delays are sufficient to estimate consistently a
narrow link capacity”. This way, it rules out packet pairs impacted
by cross-traffic, and no posterior statistical analysis is necessary to
obtain an accurate estimate, turning the technique into the fastest
estimator.

The basic ideas incorporated in CapProbe can be observed in the
following Figure 1. A packet pair is sent from source to destination,
and the serialization delay of the packets change according to the
bottleneck speeds. As the packet pair passes the narrow link, the
dispersion does not change anymore and it is preserved throughout the
path until the destination. The destination then, can either filters out
packet pairs according to one-way delay or it can echo the dispersed
packet pair back such that the sender could also do filtering. The
final dispersion of the minimum delayed packet pair represents the
end-to-end narrow link capacity and it can be calculated as follows:
(Capacity(C) = PacketSize(L)

PairDispersion(Tb)
).

1Packet bunch mean back-to-back packets with a size greater or equal to
two.

Fig. 1. Capprobe Overview

However, if a measurement point is collecting samples from a
receiver side perspective, then Capprobe technique allows to measure
the backward path capacity, i.e., the path capacity from the sender
to the receiver. In this way, the evaluated measure is the Round Trip
Time (RTT) instead of delay. Thus, an interesting aspect is how to
determine when the minimum sum in a set of packet pair samples
is actually equal to the non-queuing (minimum) RTT sum. Clearly,
the higher the congestion, the lower is the probability of obtaining a
minimum RTT sum sample.

Consider the set of packet pair samples, i = 1, 2, ..., let Ri
1 and Ri

2

denote the RTT’s of the first and second packets of the ith sample. Let
the minimum RTT sample be the jth sample. Thus, min{R1 +R2}
occurs at the jth sample.

Now consider the minimum among the RTT’s of the first packet
of all packet pair samples, i.e., min{R1}. Let min{R2} denote the
corresponding quantity for the second packet.

In the set of packet pair samples, it is not necessary that min{R1+
R2} = min{R1}+min{R2}. In other words, it is not necessary for
the minimum RTT sum to be equal to the sum of the minimum RTT’s.
However, it could happen, for instance, that the RTT of the first or
(the second) packet in the minimum RTT sum is greater than the
minimum RTT of the first or (the second) packet among all samples.
In this case, min{R1 +R2} > min{R1}+min{R2} , then we can
deduce the following:

• This packet suffered some queuing delay;
• The dispersion obtained from the minimum sum could have been

a distorted one;

We refer to this relation as the minimum sum condition and it helps
to filter incorrect samples.

Then, the question that raises and main motivation of this work is:
“Could we embed a path capacity estimation within TCP, with
minimum changes, relying on useful traffic while downloading
some webpage from the Internet?” This way, in spite of the
problems (non-cooperation, ICMP inaccuracy, convergence, extra
probing packets), TCP naturally could overcome these limitations.

A. TCP Inference Algorithms for Capacity Estimations

Our approach to develop TCP inference algorithms consists on
identifying pairs of data packets sent “back to back” from the sender
to the receiver. Clearly, the moments when those packet pairs were
sent can be identified during the beginning of the slow start phase.

In this phase, for every Acknowledgment sent from the TCP
receiver side, it triggers naturally in the sender side, the transmission
of a packet pair “back to back”. Our TCP inference algorithm uses
this normal behavior and inspired on Capprobe, it runs on the receiver
side playing the role of a passive estimator which aims to identify
such packet pairs that do not suffer queuing along the path. This
way, we do not change the TCP design and do not include any extra
probes on this task.

A crucial aspect of TCP on obtaining unaffected packet pair
samples during the slow-start is that at each Round Trip Time(RTT),



the sender is designed to send packets as long as the congestion
window permits. Clearly, the amount of packets sent out on each
RTT cycle increases turning the transmission of packet pairs into
packet trains. Given this traditional pipe filling behavior of TCP, the
problem of finding packet pairs that did not suffer queuing become
harder.

At each RTT all the packets belonging to a RTT cycle are sent in
trains. Therefore, these packets except the first and the second ones
will be clearly queued, a behavior that we refer as self-interference.
In other words, due to the inherent protocol design, the potential
number of good packet pair samples is reduced in practice. In order
to address such a problem of finding good samples related to the
TCP design, we elaborate two inference algorithms. We refer to these
algorithms as short regulated rate algorithm and no regulated rate
algorithm .

Figure 2(a) describes the short regulated rate algorithm. The basic
idea is to respond with just an accumulated ack to each pair of data
packets, instead of sending two acknowledgments. Accumulated acks
means to respond using the sequence number of the second packet
for each received pair. This algorithm induces a regulation of the
sender window size during the slow-start phase, imposing a period
of path capacity sampling.

The induced regulation is explained by the gaps of Figure 2(a). It
is important to note that each accumulated ack in a current cycle is
sent i) if two data packets arrive into the current cycle, or ii) it should
wait by the first data packet of the next cycle. In the case ii), there
is a regulation of one RTT initially, but it decreases substantially as
the cycles become close to each other. In this figure, we illustrate
an example in which the receiver responds with an accumulated ack
to each two data packets. In practice, our implementation allows the
receiver to choose a constant setting the number of data packets to
wait before sending an accumulated ack.

In fact, the regulation phase is designed to collect minimal RTT(s)
samples in a very short time. The short period of time is based on
the fact that 20 samples has been largely sufficient on Capprobe [6]
to compute a correct estimated capacity. Doing a simple worst-case
calculation, assuming an RTT of 50 milliseconds, the time taken to
collect 20 samples would be 1 second, for an RTT of 100 millisencods
it would take 2 seconds.

It is important to note that after this short phase, there is no more
regulation and TCP will continue its slow-start phase increasing the
window exponentially.

The second algorithm (Figure 2(b)) presents the no regulated rate.
In this case, our aim is to identify the TCP RTT cycles based on the
gaps between cycles. In contrast to the short regulated rate algorithm,
the basic idea is to extract pairs at the beginning of each TCP RTT
cycle, exactly the first and second packet of each phase. However,
there is a difficulty related to the fact that gaps become harder to find
as the window size increases. To clarify this point, recall that after
e.g. the fifth cycle there will be 25 = 32 packets being sent by the
sender. Hence, as soon as the channel is filled up with packets, the
beginning of the next cycle is sent just after the end of the current
cycle. At this point, there is basically no visible gap after the sixth
cycle, obviously because the window size is designed to increase
exponentially.

The no regulated rate algorithm in contrast to the regulated one,
is able to find 5 potential good samples most of the time. The
advantage compared to the short regulation algorithm is that there is
no regulation is needed to obtain good samples. However the capacity
estimation is computed based on the results of these 5 samples
compared to 20 samples of the short regulated rate algorithm. We

explore the trade-off(s) between these algorithms described in details
in the results section.

III. KERNEL INSTRUMENTATION

Our focus on kernel implementation is oriented to the instrumen-
tation of the Linux 2.6.18 TCP module in which we add the new
capacity estimation features. In addition, we aim for achieving high
precision results in our experiments. The most important features
were inserted directly into the tcp input.c and tcp output.c files
concerning the receiver and sender machine state sides, respectively.
The tcp.h file was also modified by inserting new data structures to
collect packet pairs into a constrained vector.

It is important to note that the measured capacity is calculated
simply dividing the size of the second packet by the dispersion
between the packet pairs. Due to this reason, the interarrival time
is crutial for a reasonable precision in packet pairs dispersion. The
operating system timer can be used to measure events with an
accuracy of 10 ms, depending on the kernel-heartbeat. However,
the packets interarrival difference represents events happening in a
granularity often much less than 10 ms.

The today’s processors are running at frequencies of more than
1GHz, then we can use the instruction counter to time events with
much higher accuracy than 10 ms and low overhead. Hence, we
adopt the use of the RDTSC (Read Time Stamp Counter) register
which returns a 64-bit value in the registers EDX:EAX representing
the count of ticks from the processor. The RDTSC CPU instruction
allows us to capture measures in order of magnitude of micro-seconds
providing high precision for collected samples.

A. Kernel Implementation of TCP Inference algorithms

In the sequence, we present the main inference algorithms in a
simplified state diagram. For each packet arrival, a transition from
the state waiting packet occurs leading to the algorithm execution in
both of Figures 3(a) and (b).

Figure 3(a) presents the short-regulated version. We can observe
that the algorithm receives 2 packets (num packet < 3) to store
the information of the packet pair into the vector. Simultaneously,
a test is executed (next ack < 2) in order to identify when a pair
arrives and after that the function send ack() is called. Recall that the
send of ACK is delayed essentially due to the wait of the first data
packet in the next cycle as explained in section II-A. In practice,
the implementation allows to choose a constant x representing the
number of data packets to wait before sending an accumulated ack
(num packet ≤ x).

The no-regulated algorithm is showed in Figure 3(b) describing the
basic state diagram. It captures the first packet and second packet of
every RTT cycle by observing the expected slow start behavior. For a
given RTT cycle, it counts the data packets to determine the beginning
of the next cycle from the receiver side perspective. Every ACK will
trigger 2 data packets (wait pack = wait pack + 2), which are
used to find the first packet of the next cycle (next first packet =
next first packet + wait packet). 2

In the current implementation, we also take into account the send
of delayed acks which can conduct to accumulated acks. Although the
state diagram is a simplified version that assumes no accumulated ack,
it provides a set of variables based on the effective implementation
which supports the accounting of packets in a determined cycle.
The current implementation provides a feature to deal dynamically

2In theory, we have expected to find a pair in the beginning just taking the
2n and 2n−1 data packets, where n is the sender window size. Unfortunately,
the delayed acks phase affects this theorical behavior preventing it in practice.



(a) Short Regulated Rate Al-
gorithm

(b) No Regulated Rate Algo-
rithm

Fig. 2. Removing Packet Pair Self-Interference

(a) Short Regulated Rate Algorithm (b) No Regulated Rate Algorithm

Fig. 3. State diagram for TCP inference algorithms

with accumulated acks. In fact, we use a variable n (wait pack =
wait pack + n) to follow precisely the number of received packets.
The variable n is computed by counting the number of received
packets before one ack is sent.

The next algorithm is common for both implementations (short-
regulated and no-regulated). Note that this part is triggered as soon
as 20 packet pairs are received (ARRAY SIZE). In the beginning,
the algorithms finds the smallest sum of RTTs among all packet
pairs. After that, the minimum RTT is found for the first packet
subset as well as for the second packet subset. Finally the main
IF-statement, differently than CapProbe, allows faster convergence
to happen even if the minimum RTT SUM rule is not reached
(min{R1+R2} = min{R1}+min{R2}). This is done by including
a tolerance threshold, in order to accomodate samples for which the
rule may not converge. This can be later adjusted to an anytime
version of the algorithm presenting better results as more packets are
exchanged.

IV. TESTBED DESCRIPTION AND EXPERIMENTS

In this section, we describe an extensive “path estimation” cam-
paign using our TCP receiver implementations. Most of the experi-
ments were conducted on 11/07/06 to 12/04/06 especially during the
nighttime. The central measurement point was chosen to be located at
UCLA (University of California Los Angeles). Measurements were
collected exploring path diversity to a set of 34 open source web
servers. This list of open source web servers was, initially, obtained
from the website “Google Summer of Code [4] 2006”, a well-known
repository of open source related projects. The idea was to pick up

Algorithm 1 Minimum Packet Pair Estimation
1: if numPacketPairs = PACKETS ARRAY SIZE then
2: pair ← minSumRTT (PacketPairsArray)
3: firstPacket← minFirstPacketRTT (PacketPairsArray)
4: secondPacket← minSecondPacketRTT (PacketPairsArray)
5: sumRTT ← pair[0].rtt + pair[1].rtt
6: if sumRTT < (firstPacket.rtt + secondPacket.rtt +

ToleranceGap) then
7: dispersion← pair[1].timeStamp− pair[0].timeStamp
8: secondPacketSize← pair[1].packetSize
9: narrowLinkCapacity ← secondPacketSize÷ dispersion

10: end if
11: end if

large enough (10MB) files from these websites, in order to form
a domain of websites to study. The chosen web servers belong to
the following sites: sourceforge.net, opensolaris.org, osuosl.org, some
.edu, bbc.co.uk, and etc.

We installed our modified Linux 2.6.18 kernel implementation in
one high-end host, composed by a Dual Intel Xeon 3.2GHz processor,
1GB RAM, PCI-X 64B/133Mhz (front-bus bandwidth 8Gbps), Intel
1000 Server Pro NIC (1 Gbps Ethernet). The machine was connected
directly on a Cisco Catalyst 4500 with multiple 1 Gbps interfaces,
one of the main access switches to the UCLA all 10Gbps core
backbone. The connectivity of the UCLA backbone with academic
networks, the case for most of the open source sites, goes through the
CENIC (Corporation for Education Network Initiatives in California)
at 1Gbps, and at 1Gbps to Abilene (Internet2). In addition to the
careful choice of time and high capacity path (good to measure
slower link speeds), we create a measurement environment with



minimal interference from the machine. In this regards, we used
the Linux kernel in single user mode and stored all the logs and
downloaded files in a RAMdisk of 64MB, reducing the likelihood of
other processes and I/O requests to impact measurements.

In terms of initial validation of the path estimation technique, we
have done several internal experiments within UCLA. In more than
90% of the experiments the error was below 10% from the real
physical capacity. We have tested successfully to several webservers
of different UCLA departments with capacities varying from 2.5Mbps
wireless LAN laptops up to 10Mbps and 100Mbps. In addition,
we performed extensive validation experiments using the UFES
University in Brazil to connect to some local DSL modems with
capacity estimated around 800 kbps.

With respect to the open source server experiments, the measure-
ment bulk consisted of more than 20,000 downloads to the chosen
sites. Each download was limited to only 3 seconds, by killing the
process after the deadline. The reasoning of such short amount of
time, per TCP connection, was because we were interested in the
capacity estimation over the first 40 packets.

Our analysis of the collected data starts by presenting the het-
erogeneity of the chosen servers, in terms of propagation delay
and path capacity. The following figures (Figure 4(a)(b)) present
such information. On figure 4(a), we can observe that 65% of the
websites had a end-to-end delays of less than 100 msecs, therefore
geographically located either inside USA, or close to USA. The rest
35% had more than 100 msecs delay, capturing servers on other
continents. In terms of narrow link capacity, the measured open
source sites had in its majority 75% of the E2E narrow link capacities
less or equal to 100Mbps. The percentage of narrow links below
or equal to 10 Mbps was about 30% of the cases. Other capacity
clusters obtained were in the 155 Mbps (OC-3) region with 5%, in
the 622.08 Mbps (OC-12) with 15% and finally a few more 5% close
to 800Mbps.

As we narrow down the estimates per server, using the short
regulated algorithm and 100 experiments per server, we can group the
estimations in clusters (Figure 5(a)(b)(c)) of estimated narrow links
below 100Mbps, from 100Mbps to 400Mbps and beyond 400Mbps.

In each figure, we generate a boxplot representation of the data for
each cluster. The boxplot groups the data distribution inside a box
area, it show the main characteristics of the data distribution, the line
in the center is the median of the data (less skewed centroid than
average), the upper and bottom limits of the box represent the 25%
and 75% quartiles, finally the points outside the box represent outliers
(3 times the standard deviation). The analysis of the results shows that
the method has good accuracy in every cluster. The results “below
100Mbps” showed the smallest level of variation. The estimation of
the “100Mbps to 400Mbps” narrow links presented some expected
fluctuation due to cross-traffic, and possibly service policies.

As we approach higher capacities, the measurements had a higher
variability, as expected. This happens because any micro-level effect
on the packet pair during its traversal through the end-to-end path
can disperse the pair substantially. As a short example, if we are
measuring a 1Gbps narrow link, the minimal packet pair dispersion
is theoretically in the order of 10 µsec granularity, assuming 10,000
bit packets. While, 800Mbps theoretically should have as the minimal
dispersion about 12.5 µsec, a difference of only 2 µsecs! In the graph
(Figure 5(c)) we observe that the measurement precision limit seems
to lie in the region of 622 Mbps (OC-12), in other words, from the
high capacity estimation, the 622Mbps ones presented the smallest
distribution box.

One question that we were interested in was the “similarity” of

the inference algorithms: short regulated and no regulated one. In
order to compare them, we performed 21,332 experiments, to all sites,
using each algorithm. After the collection process, we computed the
difference of the median obtained from each algorithm and every
site. The result showed that the methods are nearly identical in their
estimates, since the difference of the two was smaller than 10Mbps
on 81.25% of the cases.

In order to capture the remaining 18.75% case, we plotted the
difference distribution for each site in figure 6(a), the difference is
calculated by subtracting every “short regulated” measurement from
the equivalent “no-regulated” ones. We can observe that most of the
40,000 samples are close the zero difference, while the difference
has some fluctuation less than 200 Mbps and, in 4 cases less than
500 Mbps. These cases are the ones where we have high speed
expected fluctuations, therefore it is not an artifact of the algorithms
differences.

A thorough analysis of the position where the best packet pair
occurred inside the vector that stores the packet pair estimates,
showed a bias on the first 5 packet pair samples. The best packet
pair is referred as the one with minimum RTT sum among all packet
pairs in a connection. This result shows that the small difference
observed between the algorithms has an explaination on the fact that
in 68.30% of the cases, the best packet pair was located within the
first 5 packet pairs.

The following figure 6 presents an histogram of the position
where the best packet pair was found in the vector for our 20,000
experiments. The histogram shows a strong mode in the second
packet pair of the connection, while the rest of the positions appear
to be uniformly distributed. We argue that the bias on the first 5
packets could be due to the expected low cross-traffic in the nightime
experiments, thus the first pairs would experience minimum delay. In
addition, the explanation of the first pair not being the strongest mode
lies on application delay to fetch pages, so that the second pair is
more likely to go through without addicional processing time. We
intend to validate these claims in the future.

Finally, another issue on the algorithms is the likelihood of the min-
imum sum convergence (min{R1 +R2} = min{R1}+min{R2}).
An analysis on dataset showed that using the 20 packet pair vector,
72.98% of the samples converged. Moreover, the convergence has
a strong filtering effect on the outliers of the capacity estimation
distribution, as it can be seen when comparing: samples without
convergence and samples with convergence. The figure 6(c) shows the
percentage of “good” samples (out of 20,000) estimated “correctly”
inside a range of 2 * standard deviation from the median. Thus, it
can be observed that the convergence increase the chance of obtaining
“good” samples from 93% to 99.1%.

V. APPLICATIONS

In this section, we describe two developed applications that make
use of our TCP built-in capacity estimation. The first application is
a direct use of the embedded narrow link estimation on the TCP
flow control mechanism: i.e. receive advertised window. Thus, the
receiver regulates its window size based on measured capacity and
delay information. Moreover, it effectively limits the amount of traffic
in flight reducing the usage of buffer space on the bottleneck, and
improves TCP throughput by updating faster the amount of receiver
buffer space. The second application is designed to find the exact
location of the narrow link (i.e. bottleneck) on an Internet path. It
involves a combination of traceroute and monarch [5] tool.

We should emphasize that the purpose of this section is only
to show the potential applicability of our embedded TCP capacity



(a) RTT Diversity (b) E2E Path Capacity Diversity

Fig. 4. Exploring the Heterogeneity of the Open Source WebServers

(a) Below 100Mbps Sites Subset (b) From 100Mbps to 300Mbps

(c) Above 300Mbps

Fig. 5. Narrow Down the Link Capacities

(a) CDF Measurement Difference Per Site (b) Best Packet Pair Position Distribution

Fig. 6. Similarity of Short Regulated and No Regulated & Min RTT Sum Convergence Filtering Effect



estimation. We did not perform an exhaustive experiments campaign,
but we present preliminary results.

A. Narrow Link Based TCP Flow Control

The developed application assures the proper use of the narrow link
capacity, by controlling the TCP data flow according to the maximum
bandwidth-delay (BDP) product into a certain path. The BDP quantity
is the maximum amount of packets or bytes than can be in-fligh
at any moment without using buffers, sometimes it is also called
pipe size. By using the BDP value, the receiver advertises (using the
receive window) the maximum allowed to sender, effectively limiting
the amount of traffic in flight to be equal to the pipe size. Thus,
reducing the usage of buffer space on the bottleneck. It is important
to point out that, in the lack of this flow control, TCP naturally fill
out buffers in the bottleneck since it keeps increasing the congestion
window until it hits a packet loss.

An estimation of the optimal receive window, and a fast update of
its value within the first 40 packets also impacts the slow start phase.
A normal Linux implementation would start the receive window small
(i.e. 4 packets), and increment by 2 for every packet. This potentially
limits the effectiveness of the slow-start increment, since it prevents
a large number of initial packets during the slow start. Our method
allows the regular slow start to execute free of bounds until the pipe
size is reached.

We implemented the changes of receive window estimation/update
in the Linux kernel. Whenever the convergence is reached, we reset
the receive window to a constant value derived from the multiplication
of capacity estimate times minimum RTT of the path. We assume the
minimum RTT of the path is equivalent to the propagation time, then
the maximum amount of packet in flight without considering any
buffer is BDP = capacity ∗ propagation. A final adjustment is
done, since the receive window in Linux usually uses the window
scaling factor (RFC 1323).

In addition, we did some experimental work on this new ap-
plication. In a controlled lab, we emulate typical DSL conditions
using dummynet [8], a popular network emulation tool. Thus, we
configured two machines to be connected through an emulated link
of 2 Mbps, buffer size of about 300 KB (or 300 packets) and a
propagation delay of 200 msecs. After the setup phase, we configured
a webserver on the TCP “sender” side and we used wget (a popular
linux download application) to download a file from the server, as our
TCP “receiver” side. We repeat the test using, on the same conditions:
a normal Linux TCP and our capacity-based receive window modified
version.

The following Tcptrace [9] graphs show that applying such lim-
iting rate technique on an emulated environment improved the total
throughput of the connection. In the first result, we compare figure
7(a) normal TCP and 7(b) modified one. The figure is the time
sequence graph, where the y-axis represents packets sent/received
during the connection time line. Moreover, since the sequence number
is always incrementing by the packet size, the curve shows the growth
rate of the TCP flow. Comparing the behavior, we can verify that as
soon as the capacity estimation is known, there is a short exponential
increase to the pipe size at time 2 seconds. At time 12 seconds,
normal TCP had transferred 2MB, while our modified version reached
2.75MB, an improvement of almost 40%.

This better and more constant growth rate also has an impact
on the flow throughput. In the figure 8 the upper line represents
instantaneous throughput every 10 packets while the bottom one is a
cumulative average throughput from the beginning of the connection.

$ sudo ./caplimiter www.cs.caltech.edu monarch -p tcp-ack -z 1001
traceroute to whirlwind.cs.caltech.edu ( 131.215.44.115)
, 30 hops max, 38 byte packets
1 131.179.80.3 0.211 ms 0.191 ms 0.189 ms
2 131.179.12.3 0.708 ms 0.678 ms 0.672 ms
3 169.232.49.65 0.442 ms 0.403 ms 0.599 ms
4 169.232.4.22 0.580 ms 0.837 ms 0.429 ms
5 169.232.4.103 0.748 ms 0.738 ms 0.454 ms
6 137.164.27.5 1.089 ms 0.927 ms 0.900 ms
7 137.164.27.248 1.117 ms 1.067 ms 1.199 ms
8 131.215.254.43 1.368 ms 1.224 ms 1.244 ms
9 131.215.44.115 1.455 ms 1.368 ms 1.318 ms
Hop kudos-pb to 131.179.80.3 at 96412857 bps
Hop 131.179.80.3 to 131.179.12.3 at 98404081 bps
Hop 131.179.12.3 to 169.232.49.65 at 95985747 bps *
Hop 169.232.49.65 to 169.232.4.22 at 97530215 bps
Hop 169.232.4.22 to 169.232.4.103 at 98773510 bps
Hop 169.232.4.103 to 137.164.27.5 at 97373535 bps
Hop 137.164.27.5 to 137.164.27.248 at 97657516 bps
Hop 137.164.27.248 to 131.215.254.43 at 96416740 bps
Hop 131.215.254.43 to 131.215.44.115 at 81429147 bps *
Min capacity hop is 131.215.254.43 to 131.215.44.115 at 81429147 bps

TABLE I
MONARCH EXECUTION EXAMPLE

So, analyzing the modified case, we can observe that the instanta-
neous throughput is much regular/constant than the normal one, in
fact from 4 to 7 secs it is similar to a CBR. The cumulative throughput
along the connection shows a large gap between the normal (170 KB/s
or 1.36Mbps) and our modified version (225 KB/s or 1.8 Mbps),
effectivelly improving the utilization of the 2Mbps link from 68% to
90%.

B. Narrow Link Location Tool

As we pointed out, this application uses a combination of traceroute
and monarch [5] tool. The goal is to find the exact locations
and capacity of narrow link bottlenecks on an Internet path. In
addition, the tool was used to validate some local results at UFES
network, estimating path capacities of non-cooperative wireless links,
servers connected at 10Mbps hubs, servers at 100Mbps, and so forth
accurately.

As a short overview of the monarch tool, it was implemented to
experiment with new TCP implementations in the “network at large”
by forcing non-cooperative hosts (i.e. routers and serverless hosts)
to reply back several types of probes as if it were a normal end-to-
end TCP connection. To accomplish this task, Monarch starts a TCP
connection with itself (with both call-legs, sender and receiver, in
the same machine). However, the TCP packets, instead of being sent
directly, they are changed into probes (ICMP, UDP, dummy TCP on
closed ports) and sent directly to a specific remote host. The remote
host then replies with errors/control messages (like ICMP replies or
TCP RST). The final step changes the reply probes back to TCP
packets as they arrive, this way, sending packets to the receiver side
of the local TCP connection. In summary, letting TCP generate as
much probing traffic as TCP normally would do (Figure 9)).

Since our modified kernel is actually embedded in TCP Receiver
Side (*) as shown in Figure 9(a), it was not necessary to change the
monarch implementation. We just instrument it by estimating path
capacities from the local receiver to any non-cooperating host, in
addition, exporting the estimate from the kernel to userland through
a regular netlink() API.

In order to perform the narrow link position discovery, our in-
strumented monarch tool calls traceroute to a certain destination, as
shown in our execution example (Table I). Once the intermediary
routers are all known, the monarch tool is used to create one
“emulated” TCP connection to each discovered router along the path.
Thus, estimating step-by-step the narrow link capacity, and further
position, using a regular TCP loop.



Fig. 7. TCP Time Sequence

Fig. 8. TCP Throughput Comparison

(a) Monarch Design (b) Find the Position of a Narrow Link

Fig. 9. Discovering the position of Path Capacities on Any Host of the Internet

VI. CONCLUSION

In this paper, we have presented a simple technique to estimate
end-to-end Internet paths capacity within a TCP receiver. In spite of
the subject of the path capacity estimation has been greatly explored
in the literature, our novelty is on embedding it into an ongoing TCP
receiver connection, by making use of it directly. We describe in
details our algorithms, the tradeoff of capacity estimate convergence
versus number of false positives. In addition, we explore a rich set
of open source file server to discover the path capacities associated
with them. The validation was done by extensive tests in the lab, in
the department local area network, and also by contacting some of
the ISPs that we measured. The results present consistent accurary
up to 600 Mbps using TSC register. We finish the paper, presenting
two possible applications, one augumented version of Monarch [5]
that narrow down the end-to-end capacity estimation to every router
along a certain path, and one advertised windows proportional to the
pipe-size limiting the maximum sending rate of TCP and the buffer
usage of bottleneck.
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